a2 United States Patent

US009189720B2

(10) Patent No.: US 9,189,720 B2

Smith et al. 45) Date of Patent: *Nov. 17, 2015
(54) METHOD FOR GENERATING IMAGES USPC i 235/462.01, 494
FROM TEXT See application file for complete search history.
(71) Applicant: gg}:gjﬁ:;i ?UOSI)IPORATION, (56) References Cited
U.S. PATENT DOCUMENTS
(72) Inventors: Timothy Smith, Rolling Meadows, IL,
(US); Thirugnanamurugan 6,279,828 Bl 8/2001 Fannccccoconeeernee 235/462.01
Ramalingame, Carol Stream, IL (US) 2007/0106529 Al 5/2007 Dixonetal.cccocvvennrnn 705/1
2008/0048044 Al 2/2008 Zhaoetal. 235/494
. . : 2008/0304891 Al 12/2008 Saijoetal.cccooevenene. 400/76
(73) ASSlgnee' IPL?I&Sg)Lee Corporatlon5 SChaumburg5 2010/0053650 Al 3/2010 Yamamoto """"""""""""" 358/1 '9
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35 KR 10-2007-0020336 22007 o, GO6F 9/00
U.S.C. 154(b) by O days. WO WO 95/12863 5/1995 GO6K 19/06
Thi.S patent is subject to a terminal dis- OTHER PUBLICATIONS
claimer.
International Preliminary Report on Patentability issued in corre-
(21) Appl. No.: 14/479,748 sponding foreign application, PCT/US2011/060581, pp. 1-6 (May
. 30, 2013).
(22) Filed: Sep. 8, 2014 International Search Report issued in corresponding foreign applica-
. o tion, PCT/US2011/060581, pp. 1-5 (Apr. 25, 2012).
(65) Prior Publication Data Written Opnion issued in corresponding foreign application, PCT/
US 2015/0060556 A1~ Mar. 5,2015 US2011/060581, pp. 1-5 (Apr. 25, 2012).
Related U.S. Application Data Primary Examiner — Seung Lee
(63) Continuation of application No. 12/946.486, filed on g 4 fzgran,{Agelgz, or Ilz)rrgc— J. Peter Paredes; David G.
Nov. 15, 2010, now Pat. No. 8,827,168. osenbaunt, hosenbaum LE, Lo
(51) Imt.ClL (57) ABSTRACT
GO6K 19/06 (2006.01) . . .
GO6K 1/18 (2006.01) A computer assisted method for generating an image from a
(52) US.Cl text character includes the steps of reading the text character
cpe GOGK 19/06028 (2013.01); GO6K 1/18 from a machine readable storage device and pattern mapping
"""""" (2013.01); GO6K 19 V06112 (2013.01) the text character to a pattern of multiple-valued text charac-
(58) Field of Classification Search ters, and rendering the image.

CPC ... GO6K 19/06028; GO6K 19/06112;
GO6K 1/18

19 Claims, 11 Drawing Sheets

2028

108
-

G

7 !
1087 H

106+ \34{55);['\8/“ - 203R

Y %k
P1 P2 PR

EE TS S—

|-204

114--{ ABAABRAABS..

US 9,189,720 B2

Sheet 1 of 11

Nov. 17, 2015

U.S. Patent

ANy

A

SN

-
\\\
N

2

AR
4‘\5‘\"-\.\.“\\\

US 9,189,720 B2

Sheet 2 of 11

Nov. 17, 2015

U.S. Patent

o
i

grees

R

fooee
[AIE 4 P
e <
<, of, 11}
<L

R

BAAH

SO

+
a3

1 si.““\‘\ _3\- £

A%
3

N
AABHEAR

A
L AAREA L.

EERUS

DISPLAY

~E
9]
4%
£4 7 X o
A - \c\ 5 bt
A P . e s
e s oo e i
g b

FIG. 3A

FIG. 38

U.S. Patent Nov. 17, 2015 Sheet 3 of 11 US 9,189,720 B2

AP

CHARACTER Ny
106 neapy ot 2008
TR 108

T Bx P y_...w--ws

TTTTTRAAR L2020

108 RS
: L oman SABC, .
e APPLY L2038 S

ABC., 114-{AABABABBEAABE..

eny, e

114-{AABABBABBABEA,

~206A

118 R -

Aseicn 0

CATANBLA 118

R R IR
HMa-1 1 01

TR
ey
Y

1184

FiG, 3C

U.S. Patent

11

Nov. 17, 2015

Z
p
e

MAF

GHARACTER

SET

ASSIGN
A
i
g

R s ¥ o)

Sheet 4 of 11

US 9,189,720 B2

2028

o 1R0, 160
¥

2068

¥

16

1047

»\».k‘\

READ

RSN
NN 5\~

N

S
./

¥

APRLY
MAPPING

&4
? £48

“,:“"‘« E {.} 3 fa{

1 *§<z~if}fx§;xgm\§

JOIN

y _,/"Wk\\ {} ""i

54

READ et 2008

“"\"‘5&;\'\"\% o .
By f‘fﬁ{:%\ 108

\,M

e

_ 2038
APPLY
MAPPING

APPLY

ASSIGNMENT

DISPLAY

118

FIG. 3E

H 4
102
!

i

US 9,189,720 B2

Sheet 5 of 11

Nov. 17, 2015

U.S. Patent

¥ O34 M«anhgmg@ugﬂ%mwm@ DG
BEET HUB
L LE
. mw,,umw
LEHSOAHA OSSR BE WIB Uy DOL UBUM
CESHGESROR G WISl usy GO uBlm
SEUBBITUON I0Y DRACWIBL PO} (UL £ $O8ED-] SHESSHARSHY, WM Uy 7 ustm
| ROOOCARSSOR. WS Usl L uBlm
L BSHASEH m.@mmé Lol ust] [UBlim
X} 58D
b
Zaeyasea wimss Ustunu pEEBIWOLsa0dS e Uoy Sunt 4

PHOEZLBPpOOBE pUs

BGETY DUS

RERT Y

mwwm

Q0L Wl usl) (B LIMHO uauM
(GO wamyal uely (6L IO uay §
PO uBL UL (L0 1 HHT usyM
S WSS UBLY 3 YTXQ YL
6 LR UeL (58] 1D :am%
06l W uaky (pE] XM uBlm
G5 W USLY (D0 LM UBLA
{06 WImMad uety (FO L0 uaum
A5 wimss usl (L MM usuym
BE WSl Ul (021 Ik usuM
TP WA UeLy ﬁmw Ve 7Y LB
ABADedsel "o TUYl § UMRL (52 LMD nag vawmma ~ JUOLILOD)

PR BB (PO D) UBLM
MoLMes usLly «mm%xu LaLUM
0 umss usgl (ZE1HHD % .
R wiBs el [LD Uen M

J wmmm

S IRGUITEE WHES (IRYD D1 LIDIIE7 L RROTREY O

US 9,189,720 B2

Sheet 6 of 11

Nov. 17, 2015

U.S. Patent

g old

SEBYRDODIBGRE | BNODIBD PUB
YIBH M LITE
| {Lon) whirjwordsesedgpgion | insey = 1N$eM
epupiosynBicuoldsecedsieg e || Hsey = INsey

‘ . dooy pus
L reponiegsinsonsiniicaz spoDponbBicuoseoedsiegies | 1sey = 1nsey
. oo

{spoadegsiabust | w o)

BYD BEIS — 0 NDIUOIISR0RACIBmIRg =l NS

£ POW SNEBANIBUN = XBRUPDSYTH
h . . . oo pun
AL T eponlegs ISOns IIBICRZ LAROOB S+ DRANIBUDL = anBANIEUH
dlooy

(apcoegsipbuey L g
PO =l BRRANISY T

ubeg
Lonnyigieyaies ynsey
BT BTN
LEBCLUNN XBLUPBDBU Y
SIBUALNN BRRANDBUY
LHARUNM

S ZIRUQIBA UINDS (ZIRUSIBA SDODIRGSISESYRPDOIBERT L SR0TIR0 UGN

US 9,189,720 B2

Sheet 7 of 11

Nov. 17, 2015

U.S. Patent

8 "3 wﬁmmxmmmn PO A
.. P00 e, 6 ,
L1 1PBUS oA,) posseqoueaunu” oid i AAD.)
mémum%caw@ zlaponeh
CH IBRUSHIOH,. wu%mm .
*
Lopo0 G, 01 199USU0A,,) 0 MWBXABUD AAZIA A0V 1dSY HD w%mmw

L9
nmmwl | Usspuspoumni iy o {{gzz vepipouniyg || ipesp = ynsey
(01HO W@ w%&:m@m&x;mﬁmw HOOTHH O 0RHD
oramo oo oyuHolfiorHo]|(orumollo) |

w} w\

9|
oo oraHnlio wxmw:m?xﬁm awmx@

#

[[(0RHO {0 HO | (0DaHO [{DPHO[[(02uHO || (07RO | (ORIHO(0RIHO]| 1)Uk
[oraHO (s HO] ammu orHoloraHol|(DaHo (0o ::%ws 2 pEsH
oxp]] (oMol {onue || (ovkup | (ol {ouunl (@) | (zgluo
oyl okl oo m_%w (hyolf (D)auoff (ohuol] (o | (2210 | {99)itp = Lpeak
8 04 ooy pus
oA MNODIBRIG wl WNOCERIG
- 3 pus
{o)un | unsey = ynsay
a5
gz funs &m ” x;mmm
uewg. = (L1'5M8ang
&33\

{5h wmmﬂ LU0
0 = WNOO@T
LA OSICESYIRONIBENT | RROTRG) O

T%xx@
BHOHOIHHO | (0HD] (0)uHD
eSO (0HD] (07HO

U.S. Patent Nov. 17, 2015 Sheet 8 of 11 US 9,189,720 B2

d} {38 " \\\',, QE &Q B f%{}{}
1041 S .

map /T « LOMPression LS00
D N Decimal
106 3* X A0 s Other Base
JNS £ i Yy -1

11 {}»

~204 -

o 08

114/ ABBAABBAB X

VAABBA ... Sy Separate 410
304 DNA_File_#678432123 |

3 A a

112 Y Y !

e , 318 314

2084 J—
112, ASSIGN T
CATBLBLA

v oe o v ‘ ~420
1181 0 0 1 | (Comvert |40
AN 678432123 >

B M7 R 316
S G i ay '

18

pigpLay |2l8
FoaT— et

Cambine
DNA_File_#oR0pv 320

paa .

FIG. 8 FIG. 10

US 9,189,720 B2

Sheet 9 of 11

Nov. 17, 2015

U.S. Patent

2 x@m&
PRASEL0 BN pUa

‘G Ul

ool pus
5 $HG F WnNoUnL g = &nx
S0 Wnng %ﬁmmw PUMHOAERY = G
dooy

gL U

. M;nun <

SUNNASS = LYY

Lifing

otk
3 pus
LS U
It
{1 LN 19 poeseqingang wined
uey (185roeseginbue es N} pUB (| =< X& H

N =l LN
ol LN
wifeg

\ SBRUNN LN
5| Zieyoses wirgel (UIBquInn N) JeuOpgeseg uopoun)

P Tsithil SRIEEY

BCRUINN |

{O0LIzIBUIBA 5
. ,”émmx%«sww&wams&?.&@&E@m
“LAXMANLEHOIONAANHDAZG08Y+88.95PE21 0. = PGIZIBULIEA JUBIBUOD 185G PO95EY
St ZIBUYDIEA, WIS (ISOWINN WIpARM) pOSSELGLIBOW :x VOIOUN IO 1d 9 MO D194

U.S. Patent

104

B4

Nov. 17, 2015

2004

Sheet 10 of 11

106

106

2024

US 9,189,720 B2

wl N s o
Check Sum

110

JOIN

/ABBAABBAB

508+

f{e}

810

Map
~f(c)

.

CP1,

¥

510

\ Append
T ABBAS

118

FiG.12

~ ABABABABBAR/

Ay

N

820

U.S. Patent Nov. 17, 2015 Sheet 11 of 11 US 9,189,720 B2

o Compression
200 400~ Decimal
L Other
—+ Base

=10

k4

£
- 202

DN Check Sum 7
e ‘\ Y

~110 fle)

%

. JOIN] . Map
{ABBAABBAB el
\AABBA.......
wé:»* I OPY .,
112 "510

assion O
1R VAN ATB..B.. A Append
¥ -
£ 1

£
&
V4

114+

- ABBA+
ABABABABBAR

118+

S ™
NS §20

DISPLAY <08

1

H

i
118+

FIG.13

US 9,189,720 B2

1
METHOD FOR GENERATING IMAGES
FROM TEXT

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority to and is a continu-
ation from U.S. patent application Ser. No. 12/946,486, filed
onNov. 15, 2010, which will issue as U.S. Pat. No. 8,827,168
on Sep. 9, 2014, herein incorporated by reference in its
entirety.

BACKGROUND OF THE INVENTION

The present invention relates generally to a method for
generating an image from a string of text characters. More
particularly, the present invention relates to a method for
generating bitmap images on demand within a database
server using only strings of text characters within stored
procedures.

Ithas been said that a picture is worth a thousand words and
perhaps this has never been more true than today. The explo-
sion of information stored on modern computer systems and
transferred across the intern& has fed the need for larger and
more complex information storage systems. Powerful data-
base servers have been developed not only to store informa-
tion, but to allow a user to sort, categorize, manipulate, re-
format, share, and interpret the information in useful ways.
One known use of database servers is, for example, the track-
ing of a variety of attributes of a package such as location,
size, weight, contents, value, ownership, delivery address,
scheduled delivery date, etc. In this application, a field within
the database server representing the package may be associ-
ated with a field within the database server for each of the
noted attributes. Any one of these attribute fields may contain
a small or a large quantity of information that requires peri-
odic updating from the field, which in this example, is the
location of the package.

Barcodes have come into use as an efficient way of trans-
ferring the sort of large quantities of information stored in a
database server such as may be involved in the example of a
package noted above. Other examples of information stored
in database servers may include tracking of test samples in a
laboratory, evidence in an investigation, or a fleet of vehicles,
among others. Typically, a barcode is generated that includes
enough relevant information to identify an item and may be
placed on the item, either by direct printing, an adhesive
printed label, or other means. Subsequently, a scanner can
read the barcode and transmit the relevant information to a
user operating a database server for updating of one or more
attributes of the item or for other purposes.

There are several methods currently used for generating
barcodes from strings of text within a database server for the
purpose of printing the barcode. All of the existing methods
involve the use of software and/or computations executed
outside of the database server. For example, some printers
include software associated with the printer that is able to
convert text read from a database server into a barcode format
while printing. Alternatively, workstations can include soft-
ware that can convert text read from a database server into a
barcode image and subsequently transmit the barcode image
to a printer. Some workstations include special fonts or image
libraries for the conversion of text from a server database to a
barcode image. In some cases upon data entry at a worksta-
tion, software on the workstation can convert text to a barcode
image using one of the methods noted above and store the
image in a database server.

10

20

25

30

40

45

50

55

60

65

2

The existing methods for generating barcodes from text in
a database server suffer from several shortcomings. All of the
existing methods require additional software and/or hardware
in addition to the database server to generate a barcode for
printing. Further, all of the existing methods require that the
barcode image generated from a workstation during data
entry be stored along with the text data. Storing the generated
barcodes unnecessarily is a waste of resources, and the fonts
and image libraries often used in generating the barcodes can
be unwieldy and execute slowly, thus wasting time.

There exists a need for a method of generating bitmap
images, for example, barcodes, from strings of text within a
database server without requiring image libraries or external
software and/or hardware. Such a method benefits from oper-
ating on the fly on strings of text within a database without a
requirement that the bitmap images be stored within the data-
base. Such a method also benefits from the ability to generate
a bitmap having any desired orientation, and in the case of
generating a barcode, benefits from the ability to utilize any
barcode encoding scheme. Further, conventional methods
including image libraries may contain image characters that
utilize a byte of data per character, whereas a method utilizing
bitmap images further benefits from saving of memory space
in temporary storage and manipulation of bitmap images
compared to the conventional methods.

SUMMARY OF THE INVENTION

In one aspect of the present invention, a computer assisted
method for generating an image from a text character is
presented. The method includes the steps of reading the text
character from a machine readable storage device, pattern
mapping the text character to a pattern of multiple-valued text
characters, and rendering the image.

In another aspect of the present invention, a computer
assisted method for generating an image from a string of text
characters is presented. The method includes the steps of
reading the string from a machine readable storage device and
pattern mapping each text character to a pattern of multiple-
valued text characters, and rendering the image.

In a further aspect of the present invention, a computer
assisted method for generating an image from a string of text
characters or a set of text characters is presented. The method
includes the steps of creating a pattern mapping of each of the
set of text characters to a pattern of multiple-valued text
characters, reading the string of text characters from a
machine readable storage device and applying the pattern
mapping to the string to produce a composite pattern of mul-
tiple-valued text characters, and rendering the image.

In yet another aspect of the present invention, a computer
assisted method for generating an image from a string of text
characters is presented. The method includes the steps of
assigning values of multiple-valued text characters to bits,
reading the string of text characters from a machine readable
storage device, and pattern mapping each text character to a
pattern of multiple-valued text characters, and rendering the
image.

In yet a further aspect of the present invention, a computer
assisted method for generating an image from a string of text
characters is presented. The method includes the steps of
pattern mapping each of the set of text characters to a pattern
of multiple-valued text characters, assigning a value of each
multiple-valued text character to at least one bit, and reading
the string of text characters from a machine readable storage
device. The method further includes the steps of applying the
pattern mapping to the string to produce a composite pattern
of multiple-valued text characters, and rendering the image.

US 9,189,720 B2

3

In yet a further aspect of the present invention, a computer
assisted method for generating an image from a string of text
characters on a database server is presented. The method
includes the steps of executing a first process within the
database server for reading the string of text characters from
a storage location within the database server and executing a
second process on the database server for pattern mapping the
string of text characters to a pattern of multiple-valued text
characters. The method further includes the steps of executing
athird process on the database server for rendering the image.

The foregoing summary, as well as the following detailed
description of the preferred embodiments, will be understood
when read in conjunction with the appended drawings.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates the use of a barcode font by the PRIOR
ART.

FIG. 2 illustrates a database entry lacking special font
characters.

FIG. 3A illustrates an embodiment of a method for gener-
ating an image from a string of text.

FIG. 3B illustrates another embodiment of a method for
generating an image from a string of text.

FIG. 3C illustrates a further embodiment of a method for
generating an image from a string of text.

FIG. 3D illustrates yet another embodiment of a method for
generating an image from a string of text.

FIG. 3E illustrates two further embodiments of a method
for generating an image from a string of text.

FIG. 4 illustrates a sample of code useful in execution of
Blocks 202A-202C.

FIG. 5 illustrates a sample of code useful in execution of
Blocks 202A-202C, 204, 206 A, 206B, 600, 610, and 620.

FIGS. 6-8 illustrate samples of code useful in execution of
Block 208.

FIG. 9 illustrates another embodiment of a method for
generating an image from a string of text.

FIG. 10 illustrates a method for converting a decimal num-
ber to a base 64 number.

FIG. 11 illustrates a sample of code useful in execution of
Block 420.

FIG. 12 illustrates a further embodiment of a method for
generating an image from a string of text.

FIG. 13 illustrates yet another embodiment of a method for
generating an image from a string of text.

The foregoing and other features and advantages of the
invention are apparent from the following detailed descrip-
tion of exemplary embodiments, read in conjunction with the
accompanying drawings, wherein like structural or functional
elements may be designated by like reference numerals.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

A method for generating an image, for example, a machine
readable image, from a string of text characters stored on a
machine readable storage device is disclosed herein. The
method does not utilize special fonts or image libraries. When
executed on a database server, the method executes all steps
ofthe method within the database server. Database servers are
currently used and known in the art, including by way of
example and not limitation, Database 11g sold by Oracle®
Corporation of Redwood Shores, Calif., and Microsoft®
SQL SERVER® 2008 sold by Microsoft® Corporation of
Redmond, Wash. The method disclosed herein can be
executed universally on any database server, though associ-

10

15

20

25

30

35

40

45

50

55

60

65

4

ated computer code may vary somewhat for different data-
base servers. When utilized to generate a machine readable
barcode, the method can generate a barcode using any type of
encoding scheme as known in the art. The method is
described in terms of embodiments of combinations of func-
tional Blocks that may each execute a task or series of tasks
via a process or series of processes running on the database
server.

Text characters are typically represented, mapped, or
encoded as numbers that a machine can manipulate using
some form of ASCII encoding as known in the art. There are
encodings that are applicable to Latin text, Cyrillic text, Ara-
bic text, Chinese text, etc. The type of encoding that is applied
to a particular character set may be selected based on the
number of characters present in the character set. For
example, in one form of ASCII encoding, there are 128 pos-
sible characters, which are each encoded using 7 bits
(27=128). Other forms of ASCII as known in the art utilize 8
bits and comprise 256, or 2% possible characters. In such an
8-bit encoding scheme each text character is encoded as one
byte of information represented by an 8-digit binary number.

FIG. 1 illustrates a step in a prior art method for generating
a machine readable image, in this example a barcode, from a
string 50 of text characters 52 in a storage location 54 within
a database server 56. The top line 58 of the string 50, “DNA
FILE #8,343,621” may represent, for example, an identifier
for a particular batch of DNA or a series of tests run thereon.
The bottom line 60, “!$"@~#!%@ represents what a bar-
code for the top line 58 looks like in a special barcode font. In
the prior art, when a workstation reads the special barcode
font, the workstation can convert the font into a barcode for
printing. However, such methodology is problematic for sev-
eral reasons, as discussed in the Background section.

Referring to FIG. 2, the top line 58 of the storage location
54 is presented as it would appear in the database server 56,
utilizing an inventive method for generating a machine read-
able image, wherein the method does not utilize special fonts
or image libraries. In this method, the bottom line 60 repre-
senting the barcode in a special font is unnecessary and is left
blank, thus eliminating wasted memory space within the data-
base server 56.

Referring to FIG. 3A, in one embodiment of a method 100
for generating an image 102 from a string 104 of text charac-
ters 106, Block 200A reads the string 104 of text characters
106 one text character 106 at a time from a storage location on
a machine readable storage device 108, for example, at the
storage location 50 of a database server 56, as discussed with
regard to FIGS. 1 and 2. The string 104 could have been input
into the database server 56 manually via a keyboard, or elec-
tronically via a process running on another database server or
within the database server 56.

Referring again to FIG. 3A, Block 202A maps each text
character 106 of the string 104 to a pattern 110 (P1, P2, .. .)
of multiple-valued text characters 112. Each pattern 110 is
unique to a text character 106 for a given image symbology.
The number of multiple-valued text characters 112 and the
multiple of the multiple-values used in the symbology con-
tained within each pattern 110 may be selected for the sym-
bology. For example, in one symbology, the text character D
may be mapped to a pattern 110 having 11 binary-valued text
characters 112 such as ABBAABBABAA. In another sym-
bology, the text character D may be mapped to a pattern of
seven 4-valued text characters 112 such as ASDFDSA. Vari-
ous symbologies commonly used for rendering barcodes
include, by way of example and not limitation, Code 39, Code
128, EANS, ITF-14, among others.

US 9,189,720 B2

5

As noted, the actual multiple-valued text characters 112
used in creating the pattern 110, in the example above are
binary-valued text characters, A and B. The actual text char-
acters used are arbitrary and any two distinct text characters
106 may be used. The same follows for multiple-valued text
characters 112 having a value for the multiple greater than
two. For example, in creating a pattern 110 including 8-val-
ued text characters 112, any eight arbitrarily chosen distinct
text characters 106 maybe used. The actual multiple-valued
text characters 112, though arbitrary, may represent a pattern
recognizable to a human user. For example, in another
example, the above noted pattern could be mapped as BSS-
BBSSBSBB, in which B represents a bar and S represents a
space for the rendering of a barcode.

The pattern mapping executed by the Block 202A may be
accomplished before or after execution of the Block 200A.
For example, in another embodiment of a method 120 for
generating an image 102 from a string 104 of text characters
106, Block 202B maps all text characters 106 of a character
set, for example, the alphabet, to unique patterns 110 before
execution of the Block 200A, as illustrated in FIG. 3B. The
character set for the alphabet includes 26 capital letters and 26
lower case letters for a total of 52 characters. Thus, in this
embodiment, the Block 202B uniquely pattern maps each of
the 52 characters to a pattern of multiple-valued text charac-
ters 112 and stores the mapping in a first memory location.
Subsequently, the Block 200A reads each text character 106
into a second memory location. Block 203A applies the map-
ping produced by the Block 202B to the text character 106
and retrieves the unique pattern 110 corresponding to the text
character 106. In another embodiment 130, referring to FIG.
3C, the Block 200B reads the entire string 104 into memory
and Block 203B applies the mapping produced by the Block
202B to the string 104 to produce a composite pattern 114, as
described further hereinbelow.

In another embodiment 140, the Block 200B reads the
entire string 104 into memory before any mapping is
executed, as illustrated in FIG. 3D. In this embodiment, Block
202C executes the mapping and inputs the string 104 into the
mapping to produce the composite pattern 114 as described
further hereinbelow. Each of the Blocks 200A, 2008, 202A,
202B, and 202C may be a process or a portion of a process
running on the database server 56.

An example of sample code useful in the execution of the
Blocks 202A-202C is illustrated in FIG. 4. The code in FIG.
4 and all examples of code presented herein are suitable for
use on the Oracle® Database 11g database server. Code suit-
able for use on other database servers may vary. Referring to
FIG. 4, afirst function “GetCode128Digit(C Char)” outputs a
unique decimal number for each text character 106 input. A
second function “GetBarSpacesFromDigit(Idx number)”
outputs the pattern 110 for each number corresponding to a
text character 106 input. The sample code in FIG. 4 is one way
to execute the Blocks 202A-202C, provided by way of
example and not limitation.

Referring to FIGS. 3A and 3B, in the embodiments 100 and
120, respectively, Block 204 joins the patterns 110 to produce
a composite pattern 114 comprising the multiple-valued text
characters 112. In the embodiment 130, referred to herein-
above with regard to FIG. 3C, the Block 203B produces a
composite pattern 114 by application of the mapping of the
Block 200B without the joining step executed by the Block
204. Similarly, in the embodiment 140, referred to herein-
above with regard to FI1G. 3D, the Block 202C maps the entire
string 104 to produce the composite pattern 114 without the
joining step executed by the Block 204. An example of

15

25

40

45

55

6

sample code for the execution of the Block 202C in the
embodiments 130 and 140 is illustrated in FIG. 5 by way of
example and not limitation.

Referring to FIG. 5, beginning with the line marked as 250,
the code assigns a start pattern 110 to the composite pattern
114. Next, in this example, within a loop that executes for
each text character 106 in the string 104, the code calls each
of the functions described with regard to FIG. 4 to select a
pattern 110 and append the pattern 110 onto a right side of the
composite pattern 114. Each of the Blocks 203 A, 203B, and
204 may be a process or a portion of a process running on the
database server 56.

In other embodiments, each subsequently amended pattern
110 may be amended onto a left side of the composite pattern
114. The side of the composite pattern 114 to which subse-
quent patterns are appended is arbitrary and may be selected
by the practitioner of the method 100; however, the composite
patterns 114 that are appended on the left side will produce a
different image 102 than the composite patterns 114 that are
appended on the right side.

Next, an end pattern is appended onto the right side of the
composite pattern 114. A checksum is also computed and
appended onto the composite pattern 114; however, the
checksum is optional and is described hereinbelow with
regard to another embodiment.

Referring to FIGS. 3A-3D, based on the value of each
multiple-valued text character 112, in one embodiment,
Block 206A assigns a value of each of the multiple-valued
text characters 112 to at least one bit 116 of a plurality of bits
118 as a step in rendering the image 102. In another embodi-
ment, the value of each of the multiple-valued text characters
112 may be encoded using a different encoding scheme from
the encoding scheme used to read the string 104 of text
characters 106 read from the storage location 50 by the Block
200A. However, in this embodiment, the value of each of the
multiple-valued text characters 112 is encoded in the same
encoding scheme, for example, an ASCII 8-bit scheme, as the
encoding scheme used to read the string 104 of text characters
106 read from the storage location 50 by the Block 200A.
Therefore, the value of each of the multiple-valued text char-
acters 112 may be encoded as eight bits or one byte of infor-
mation represented by an 8-digit binary number. The binary-
valued text characters 112 may be encoded as eight digits of
zeros or eight digits of ones. In other embodiments, other
encoding schemes may be used in rendering the image, for
example, individual bits may be used to create a pixel level
encoding; however, in the rendering of barcodes, the larger
size allows for sharper rendering of the image.

An example of sample code for the encoding of the binary-
valued text characters 112 as an 8-digit binary number is
illustrated in FIG. 6 by way of example and not limitation.
Referring to FIG. 6, the code executes a loop that executes for
each binary-valued text character 112 in the composite pat-
tern 114 (represented by the variable sBarcode). Each time
through the loop, the code appends either a char(255), which
is 11111111 in binary, or a char(0), which is 00000000 in
binary, to a variable called Result. The Block 206A in FIG.
3A is illustrated as assigning a value of each of the binary-
valued text characters 112 to a single bit, either O or 1, because
as will be described hereinbelow, in this embodiment, Block
208 utilizes only 1 bit of information from each byte, the other
seven bits in each byte not being used. The Block 206 A may
be a process or a portion of a process running on the database
server 56.

Because there are two values for the binary-valued text
characters 112, each bit 116 so assigned can have one of two
values, a zero or a one. In this embodiment, one of the binary-

US 9,189,720 B2

7

valued text characters 112 is assigned to a zero value bit 116
and the other of the binary-valued text characters is assigned
to a bit 116 having a value of one; however, the selection of
which binary-valued text character 112 is assigned to which
value for each assigned bit 116 is entirely arbitrary and may
be selected to match the encoding scheme selected to
uniquely map the text characters 106 to the patterns 110 of
binary-valued text characters 112 executed by the Blocks
202A-202C, or for other reasons. For example, it is known in
the art that in Windows® operating systems, a bit 116 having
a value of 1 represents a white pixel on a display and a zero
valued bit 116 represents a black pixel on the display. Alter-
natively, in Apple® operating systems, the reverse is true,
namely that a bit 116 having a value of 1 represents a black
pixel and a zero valued bit 116 represents a white pixel.

Thus, the binary-valued text characters 112 in this example
serve the purpose of providing a sequenced pattern of ele-
ments that are expressed as having one of two possible states.
The value of each binary-valued text character 112 can be
assigned to a single data bit 116 having two states represent-
ing, for example, a pixel on or off, as noted hereinabove. It is
contemplated that the use of multiple-valued text characters
112 having a multiple greater than 2 can be used in rendering
images 102 containing pixels that display more information
than just being on or off. For example, a 4-multiple text
character 112 can be assigned to two bits of data that can
represent 4 distinct colors or 4 distinct symbols for display by
a single pixel or group of pixels. Similarly, an 8-multiple text
character 112 can be assigned to three bits of data that can
represent 8 distinct colors or 8 distinct symbols for display by
a single pixel or group of pixels, a 16-multiple text character
112 can be assigned to four bits of data that can represent 16
distinct colors or 16 distinct symbols for display by a single
pixel or group of pixels, a 32-multiple text character 112 can
be assigned to five bits of data that can represent 32 distinct
colors or 32 distinct symbols for display by a single pixel or
group of pixels, and a 64-multiple text character 112 can be
assigned to six bits of data that can represent 64 distinct colors
or 64 distinct symbols for display by a single pixel or group of
pixels.

In another embodiment 150, Block 206B executes to
assign a value of each of the multiple-valued text characters
112 to one bit 116 of a plurality of bits 118 before execution
of'the Block 200A, as illustrated by the left side of the flow-
chart in FIG. 3E. A further embodiment 160 includes the
Block 206B executing before the Block 200B, as illustrated
by the right side of the flowchart in FIG. 3E. Following the left
side of the flowchart, the Blocks 203 A and 204 in the embodi-
ment 150 execute as described hereinabove with regard to
FIG. 3B. Following the right side of the flowchart the Block
203B in the embodiment 160 executes as described herein-
above with regard to FIG. 3C. In both the embodiments 150
and 160, Block 207 executes to apply the assignment of
values executed by the Block 206B for each of the multiple-
valued text characters 112. The Blocks 206B and 207 may be
a process or a portion of a process running on the database
server 56.

In all of the embodiments thus far disclosed, 100, 120, 130,
140, 150, and 160, Block 208 executes a step in rendering the
image 102 by displaying the plurality of bits 118 that com-
prise the image 102. The Block 208 may be a process or a
portion of a process running on the database server 56. The
plurality of bits 118 is displayed as an image 102, for
example, a machine readable bitmap image 102 having pre-
determined height and width ofthe bits 118, which may be set
in the bitmap header as known in the art. The image 102 can
represent, by way of example and not limitation, an image of

35

40

45

8

aperson, a place, a thing, a logo, a one-dimensional barcode,
a two-dimensional barcode, or any other graphical image as
known in the art.

An example of sample code for the execution of the Block
208 is illustrated in FIGS. 6-8 by way of example and not
limitation. Referring to FIG. 7, the code generates a bitmap
header as known in the art. The variable Result, described
hereinabove with regard to FIG. 6, is appended onto a right
side of the bitmap header. Referring to FIG. 8, a “VIEW”
function is used to display the bitmap image 102 generated
through the steps illustrated in FIGS. 6 and 7.

The “VIEW” function provides a “virtual table” created
from underlying text within a column of the database server
56. In FIG. 8, input to the “VIEW” function is “Worksheet
ID,” which represents the strings 104 of text characters 106 in
memory locations within the database server 56. Output of
the “VIEW” function is “Bar Code,” which represents the
bitmap image 102 constructed by the code in FIGS. 6 and 7,
where the first bit of each byte is used and the other seven bits
are discarded.

The bitmap image 102 may be stretched horizontally or
vertically for display and subsequent printing. Such stretch-
ing is common for a rendering of a bitmap. For example, a
rendering device may be preset to stretch the bitmap image
102 to make it 5 times wider and 20 times taller. Such asym-
metrical expansion may be applied to a horizontal single-line
bitmap image comprising a horizontally arranged series of
dark and light spaces. For example, in such an asymmetrical
expansion, the horizontally arranged series of dark and light
spaces may be stretched vertically into a horizontally
arranged series of dark and light vertical bars, and stretched
horizontally for improved clarity of horizontal separation
between the dark and light vertical bars. In one embodiment,
such a stretched image can be used to represent a bar code, for
example, as illustrated in FIGS. 3A-3E, 9, 12, and 13.

Variations may be applied to the order of the steps executed
by the Blocks 200A-208, for example, the Block 206 A may
be executed before the Block 204 in the embodiments 100 and
120, discussed hereinabove with regard to FIGS. 3A and 3B,
respectively. Similarly, the Block 207 may be executed before
the Block 204 in the embodiment 150, described hereinabove
with regard to FIG. 3E. In addition, referring to the embodi-
ments 150,160 in FIG. 3E, the Blocks 202B, 203 A, and 203B
may be eliminated and the Blocks 202A and 202C may be
added executing after the Blocks 200A and 200B, respec-
tively.

Variations may also be applied to the steps executed by the
Blocks 200-208 described hereinabove, resulting in many
variations in the type and appearance of the image 102. Fur-
ther, other embodiments of the method 100 described here-
inabove may include further steps. For example, another
embodiment of a method 300 for generating an image 302
from a string 304 of text characters 306 includes all of the
steps described hereinabove for any of the methods 100, 120,
130,140, 150, and 160 described with regard to FIGS. 3A-3E.
Referring to FIG. 9, the method 300 further includes a com-
pression step, represented by the addition of'a Block 400 prior
to the Block 202A of the method 100. In other embodiments,
the Block 400 may be added before the Block 203A in FIG.
3B, before the Block 203B in FIG. 3C, before the Block 202C
in FIG. 3D, and before either of the Blocks 203 A and 203B in
FIG. 3E.

Block 400 executes a compression step that affords the
compression of large decimal numbers having many digits to,
for example, a base 64 (or any other base greater than 10)
number having fewer digits. Base 64 is convenient because a
typical alphanumeric character set includes 26 capital letters,

US 9,189,720 B2

9

26 lower case letters and ten decimal digits for a total of 62
characters. Addition of, for example, a dash and a space
creates a convenient character set having 64 distinct charac-
ters. Such a character set can form the basis for conversion of
a decimal number to a base 64 number wherein each digit is
one of the 64 distinct characters.

As an example of the compression of a large decimal
number 314 to a base 64 number 316 for use in any of the
above described methods, consider the string 304 of text
characters 306 including the decimal number 314 having a
value of 678,432,123, as illustrated in FIG. 10. Without com-
pression of the decimal number 314, the string 304 includes
19 characters (including spaces and the # symbol). During
execution of the method 100, for example, the Block 202A
would therefore map 19 text characters 106 to 19 patterns 110
(P1,P2,...)of binary-valued text characters 112. Execution
of'the Block 400 produces a second string 320 that has a fixed
length for a wide range of decimal numbers, which can lower
the number of digits mapped by the Block 202A, and may
also be useful for other reasons as known in the art.

Referring to FIG. 10, the Block 400 has been expanded into
Blocks 410, 420, and 430. Block 410 separates the string 304
into a string of letters 318 and the decimal number 314. In this
example, the string of letters 318 is “DNA_FILE_# and the
decimal number 314 is “678432123” Block 420 converts the
decimal number 314 into a base 64 number 316 using any
convenient method for converting decimal numbers to base
64 numbers as known in the art.

In this example, the decimal value 678432123 converts to
a base 64 number having the base 64 value cROpv, which has
5 digits, thus saving execution of the Block 202 A on four text
characters 106. Block 430 combines the string of letters 318
with the base 64 number 316, having a value of cROpv to
produce the second string 320 of text characters 306 repre-
sented as “DNA_FILE_#cROpv.”

An example of sample code for the execution of the Block
420 is illustrated in FIG. 11 by way of example and not
limitation. Referring to FIG. 11, the character set Base64Set,
having 64 distinct characters used for conversion to a base 64
number is presented in the second line of the code. Beginning
at the line “begin,” the code executes a “BitAnd” function on
the decimal number 314 having the value 678432123 and a
second decimal number having a value of 63, corresponding
to a base 64 conversion. The result of the “BitAnd” function
is then assigned one of the characters of the Base64Set based
on decimal value of the result. A Base64Set character is thus
assigned for each base 64 digit, where each subsequent digit
is appended onto a left side of each previous digit to produce
the base 64 number 316.

In another embodiment, a method 500 for generating the
image 102 from the string 104 of text 106 includes all of the
steps described hereinabove for any of the methods 100, 120,
130,140,150, and 160 described with regard to FIGS. 3A-3E.
The method 500 further includes the computation of a check-
sum 508, as illustrated in FIG. 12. In any of the above meth-
ods, the checksum 508 is computed by Block 600 after execu-
tion of the either of the Blocks 200A or 200B and before
execution of the Blocks 206 A or 207 (Block 630 in FIG. 12),
for example, immediately following execution of the Block
200A, as illustrated in FIG. 12.

There are many methods of computing a checksum as
known in the art. Accordingly, the formula for the checksum
508 has been generically labeled f(c) in FIG. 12. One sample
formula for computing the checksum 508, presented by way
of'example and not limitation, is a summation over index i of
i times the value of the i text character. In the case of the
character string “DNA_FILE_#cROpv,” and the character set

20

25

30

35

40

45

60

10
having 64 distinct characters described above with regard to
FIG. 10, this formula expands as 1*14+2*%2443*11 .. ., etc.
Regardless of the particular formula used, ultimately the
computed checksum 508 may be converted to a base 64
number (or other base as desired) and/or run through a modu-
lus as desired to produce a number having a single digit.

Referring to FIG. 12, block 610 executes following execu-
tion of the Block 600 and before execution of the Block 630,
for example, immediately following execution of the Block
204, as illustrated. The Block 610 maps the checksum 508 to
a second pattern 510 (CP,) of multiple-valued text characters
112 following the same methodology described hereinabove
with regard to the execution ofthe Block 202A for the method
100.

Following execution of the Block 610, Block 620 executes
prior to the Block 630 to append the second pattern 510 to the
composite pattern 114 to produce an expanded composite
pattern 514 including the checksum 508. Following execu-
tion of the Block 620, Block 630 assigns a value of each of the
multiple-valued text characters 112 of the expanded compos-
ite pattern 514 to at least one bit 116 of a plurality of bits 118
following the same methodology described hereinabove with
regard to the execution of the Block 206 A for the method 100.

The checksum 508 for a machine readable image 102, for
example, a barcode is typically printed onto an item along
with the image 102. Upon scanning of the item, a second
checksum 510 is computed, for example, via software and/or
hardware within the scanner for the scanned image and com-
pared to the printed checksum 508 to verify that the image
102 has been correctly printed and correctly scanned. An
example of sample code for the execution of the Blocks 600,
610, and 620 is illustrated in FIG. 5 by way of example and
not limitation. Referring to FIG. 5, the checksum 508 is
computed by use of the above noted sample formula.

Another method 700 for generating the machine readable
image 102 from the string 104 of text 106 includes all of the
steps described hereinabove for the methods 100, 120, 130,
140, 150, 160, and 500 with regard to FIGS. 3A-3E, and 12.
The method 700 further includes execution of the Block 400,
described hereinabove for the method 300 with regard to FIG.
9, for compressing the string 104 of text characters 106 to
produce the second string 320 of text characters 106, as illus-
trated in FIG. 13.

An improved method for generating an image from a string
of text characters is presented. The method does not utilize
special fonts or image libraries and may be entirely executed
within a database server; the method executes all steps of the
method within the database server, and may be executed on
any database server.

A computer assisted method for generating an image from
a string of text characters of a set of text characters, compris-
ing the steps of: creating a pattern mapping of each of the set
of text characters to a pattern of multiple valued text charac-
ters; reading the string of text characters from a machine
readable storage device; applying the pattern mapping to
string of text characters to produce a composite pattern of
multiple-valued text characters; and rendering the image.

A computer assisted method for generating an image from
a string of text characters, including the steps of: assigning
values of multiple-valued text characters to bits; reading the
string of text characters from a machine readable storage
device; pattern mapping each text character to a pattern of
multiple-valued text characters; creating a pattern mapping of
each of the set of text characters to a pattern of multiple valued
text characters; and rendering the image. The method further
comprises the steps of: applying the pattern mapping to the
string of text characters to produce a composite pattern of

US 9,189,720 B2

11

multiple-valued text characters; and rendering the image. The
method value of the text characters is a binary value assigning
a value of zero or one. The value assigned is arbitrary or
matches the code selected to select the pattern of binary
valued text characters.

Itwill be appreciated by those skilled in the art that changes
could be made to the embodiments described hereinabove
without departing from the broad concepts disclosed therein.
Itis understood, therefore, that this disclosure is not limited to
the particular embodiments disclosed, but it is intended to
cover modifications that may include a combination of fea-
tures illustrated in one or more embodiments with features
illustrated in any other embodiments. Various modifications,
equivalent processes, as well as numerous structures to which
the present disclosure may be applicable will be readily
apparent to those of skill in the art to which the present
disclosure is directed upon review of the present specifica-
tion. Accordingly, this description is to be construed as illus-
trative only and is presented for the purpose of enabling those
skilled in the art to make and use the method for generating an
image described herein and to teach the best mode of carrying
out the same.

What is claimed:
1. A computer assisted method for generating an image
from a string of text characters, comprising the steps of:
reading the string of text characters from a machine read-
able storage device;
pattern mapping each text character to a pattern of mul-
tiple-valued text characters; and
rendering the image.
2. The method of claim 1, wherein the reading step further
includes:
reading the string of text characters one text character at a
time from a storage location on a machine readable
storage device.
3. The method of claim 1, wherein the mapping step further
includes:
storing the mapping in a first memory location; and
reading each text character into a second memory location.
4. The method of claim 3, wherein the mapping step further
includes:
applying the mapping produced to the text character; and
retrieving the unique pattern corresponding to the text
character.
5. The method of claim 1, further including the step of
printing the image.
6. The method of claim 5, wherein the image comprises a
barcode.
7. The method of claim 2, wherein a value of at least one
byteis assigned to each of the multiple-valued text characters.
8. The method of claim 1, wherein each pattern is unique to
atext character for a given image symbology and wherein the
number of multiple-valued text characters and the multiple-
values used in the symbology contained within each pattern
may be selected for the symbology.

10

15

20

25

30

35

40

45

50

12

9. The method of claim 1, wherein the text-characters and
multiple-valued characters are arbitrary and any two distinct
text characters may be used.

10. A computer assisted method for generating an image
from a string of text characters on a database, comprising the
steps of:

executing a first process within the database server for

reading the string of text characters from a storage loca-
tion within the database server; and

executing a second process on the database server for pat-

tern mapping the string of text characters to a pattern of
multiple valued text characters.

11. The method of claim 10, further including the step of:

executing a third process on the database server for render-

ing the image.

12. The method of claim 11, wherein the third process
further includes displaying the plurality of bits that comprise
the image.

13. The method of claim 12, wherein the image may be
stretched horizontally or vertically for display and subse-
quent printing.

14. A computer assisted method for generating an image
from a string of text characters, comprising the steps of:

reading the string of text characters from a machine read-

able storage device;

pattern mapping each text character to a pattern of mul-

tiple-valued text characters;

appending the patterns to produce a composite pattern

comprising the valued text characters.

15. The method of claim 14, further including the step of
compressing the string of text characters to produce a second
string of text characters, wherein the compressing step occurs
after the step of reading the first named string.

16. The method of claim 14, wherein the step of compress-
ing the first named string of text characters further comprises
the steps of:

separating the first named string of text characters into a

string of letters and a base number greater than 10;
converting the base number into a number having a greater
base number; and

combining the string of letters and the base number to

produce the second string of text characters.

17. The method of claim 16, further including the step of:

a loop that executes for text character in the string of text

characters;

the codes requests each of the functions described to select

a pattern; and

appends the pattern onto a right side of the composite

pattern.

18. The method of claim 17, wherein the pattern is
appended to the left side of the composite pattern.

19. The method of claim 18, further including a step of:

appending an end pattern onto the right side of the com-

posite pattern.

